140. Synthesis, Structure, and Reactivity of Secosteroids Containing a Medium-Sized Ring

Part 32')

Conformations and Photochemical Reactivity of Some Unsaturated 5,lO-Secosteroidal Ketones

by Liubinka Lorenc, Vladimir Pavlović, and Mihailo Lj. Mihailović^{*}

Faculty of Chemistry, University of Belgrade, P.O. Box 550, YU-I 1001 Belgrade, Yugoslavia, and Institute of Chemistry, Technology and Metallurgy, YU-I 1001 Belgrade

and **Jaroslav Kalvoda**²)* and **Hermann Fuhrer**^b)

^a) Research Laboratories, Pharmaceuticals Division, *Ciba-Geigy Ltd.*, CH-4002 Basel b, Central Function Research, *Ciba-Geigy Ltd.,* CH-4002 Basel

Dedicated to Professor *Kurt Schaffner* on the occasion of his 60th birthday

(12.VIII. 91)

UV irradiation of the unsaturated (E)-S,lO-secosteroidal ketones **1** and *6* results, in addition to (E/Z)-isomerization, in an intramolecular *Paterno-Biichi* reaction and, in the case of **1,** in transannular cyclization (along with AcOH elimination). The stereochemistry of the observed intramolecular photoprocesses can be explained in terms of ground-state conformations of the (E)-seco-ketones **1** and *6* in solution.

Introduction. ~ The effect of ground-state conformations on the photochemical reactivity and product distribution is a subject of considerable interest [2]. In this paper, we wish to report on the photochemical behaviour of some unconjugated bichromophoric systems containing a keto group and olefinic double bond incorporated in the ten-membered ring of 5,10-secosteroids **1** and *6 (Schemes I* and 2, resp.). Since, on the basis of ¹H-NMR and ¹³C-NMR spectral data, the main conformational forms of the mediumsized ring in 5,lO-secosteroids have been determined in solution [3] [4], it was possible to correlate the ground-state conformations of these molecules with their photoproducts.

As previously reported [5], UV irradiation of (E) -5-oxo-5,10-secocholest-1(10)-en-3P-yl acetate **(1)** in dioxane or acetone solution with a high-pressure mercury lamp *(TQ 150* 22) for 3.5 h resulted in an intramolecular *Puterno-Biichi* reaction to give a *la,* 5aepoxy derivative 2 (main product) and its $1\beta,5\beta$ -isomer 3 (minor component). Concomitant photochemical transformations were (E/Z) -isomerization $(\rightarrow 4)$ and, in acetone solution, transannular cyclization accompanied by AcOH elimination to produce a 1β ,6 β ,10 β (CH₃)-anthrasteroidal enone **5** *(Scheme 1)*.

In the present study, we investigated the photolysis of the corresponding 3α -epimer, $i.e. (E)$ -5- α xo-5,10-secocholest-1(10)-en-3 α -yl acetate **(6)** [4].

I) part **31:** [I].

^a) The first value refers to irradiation in dioxane, the second one to irradiation in acetone.

Results and Discussion. – For comparison purposes, (E) -3 α -acetate 6 was irradiated under conditions similar to those previously applied to the isomeric (E) -3 β -acetate **1** (see above). It was found that 6 also underwent (E/Z) -isomerization (to give (Z) -3 α -acetate **7)')** and, in dioxane solution, intramolecular oxetane formation; but in this case, only the lg,5P-configurated isomer **8** was obtained *(Scheme* 2)3).

') See *Footnote a* in *Scheme 1*

^{2,} When **(Z)-5-0~0-5,lO-secocholest-1(10)-en-3or** -yl acetate **(7)** was exposed to **UV** light under analogous experimental conditions, it was first isomerized to the (E)-derivative *6,* which reacted further as shown in *Scheme* 2.

^{3,} *(Z)-* and *(E)-3or* -acetates **6/7** were separated in the form of the corresponding *3a* -hydroxy compounds **6a** and **7a.**

The structure of (Z) -3 α -acetate 7 was determined by direct comparison with an authentic sample *[6],* while that of compound **8** was established by elemental microanalysis and spectral data. Saponification of epoxy-3 α -acetate **8** gave the corresponding *3a* -hydroxy compound **8a** *(Scheme 2),* which was reacetylated to **8.**

The configuration of the epoxy bridge in **8** and **8a** was deduced from their 'H- and I3C-NMR spectral data, which were compared with those of the corresponding epoxy-38-acetates **2** and **3** of known configuration. Thus, the ¹H-NMR signal of H-C(1) of **8** and **8a** appears at δ 3.08 and 3.06, respectively, close to δ 3.05, observed for H-C(1) of **3** (H_B-C(1) of **2** is deshielded by the C(9)-C(11) bond and appears at considerably lower field (3.95) ppm)). Similarity in spatial orientation of the epoxy bridge in **3** and **8a is** also evident from their "C-NMR spectra *(Table).*

	3β -acetate	$1\alpha, 5\alpha$ -Epoxy- $1\beta, 5\beta$ -Epoxy- $1\beta, 5\beta$ -Epoxy- 3β -acetate	3α -ol		3β -acetate	$1\alpha, 5\alpha$ -Epoxy- $1\beta, 5\beta$ -Epoxy- $1\beta, 5\beta$ -Epoxy- 3β -acetate	3α -ol
C(1)	83.2	58.5	59.5	C(7)	27.8	30.2	30.2
C(2)	31.6	29.7	37.6	C(8)	38.7	37.8	40.4
C(3)	66.7	74.3	71.3	C(9)	47.0	49.3	49.3
C(4)	42.5	37.5	44.0	C(10)	34.2	41.0	41.0
C(5)	88.5	70.0	70.2	C(18)	11.8	12.4	12.2
C(6)	31.0	31.8	31.6	C(19)	11.7	16.5	16.8

Table. *Selected "C-NMR Chemical Shifts* (ppm rel. to TMS) *of* **2,3,** *and* **8a")**

The stereochemistry of these transannular photoprocesses leading to oxetanes *213* and **8** can be explained in terms of the ground-state conformation of the (E)-seco-ketones **1** and *6,* respectively, in solution. In accordance with the stepwise mechanism suggested for similar examples of the *Puterno-Buchi* reaction **[7],** an initial attack of the 0-atom of the excited carbonyl group in its n, π^* singlet or triplet state at the transannular 1(10)-olefinic π -system is assumed, producing a thermodynamically more stable C(5), C(10)-biradical.

The stereochemical course of this and also **of** the next cyclization step (which can occur either directly or after spin inversion, depending on the spin multiplicity) is determined by the conformations **A-C** and *G* and **H** of the ten-membered ring in **1** and **6,** respectively. ¹H- and ¹³C-NMR studies have shown that (E) -3 β -acetate 1 exists in solution predominantly *(ca.* 85%) in conformation **A** *(Scheme 3)* [3]. A conformation of this type could produce *(via* the 5,10-biradical **D**) an oxetane with $1\alpha,5\alpha$ -configuration; actually, $1\alpha,5\alpha$ derivative **2** was the major photoproduct of **1** (isolated in 34 and 42% yield in dioxane and acetone, resp.). The other detected, but less populated *(ca.* 15%) conformer **B** of **1** in solution is obviously unfavourable for closure to the oxetane ring; however, it can explain the stereospecific formation of the $1\beta,6\beta,10\beta$ (CH₃)-anthrasteroidal enone **5** *(ca. 7%)* yield). This transannular cyclization most probably involves photoenolization towards the $C(6)$ -atom $(\rightarrow E)$, followed by intramolecular rearrangement *via* a cyclic six-membered species (along with AcOH elimination; see *Scheme 3*). The minor 1β ,5 β -derivative **3** (only 2-3% yield) can be correlated *(via* 5,10-biradical **F)** with conformer **C,** although the latter was not observed in solution by NMR techniques.

The *(E)-3a* -acetate **6** which, according to NMR analysis, exists in solution in the two conformations **G** and **H** *(ca. 6:* 1) [4] undergoes transannular *Paterno-Biichi* reaction only in its main conformation **G**, producing thus (in dioxane solution *via* I) the $1\beta,5\beta$ -derivative **8** as the sole transannular photoproduct *(ca.* 18% yield; *Scheme 4).*

Thc authors from Yugoslavia are grateful to the *Serbian Academy qf Science and Arfs* and to the *Serbian Research Fund* for financial support.

Experimental Part

1. *General.* Prep. column chromatography (CC): silica gel 0.063-0.200 mm. TLC: control of reactions and separation of products on silica gel G (Stahl) with benzene/AcOEt 9:1, detection with 50% aq. H₂SO₄ soln. M.p.: uncorrected. IR spectra: *Perkin-Elmer-337* spectrophotometer; in cm⁻¹. NMR spectra: ¹H (360 MHz), *Bruker HX-360:* noise-decoupled **I3C** (25.15 MHz), *Varian XL-100* spectrometer equipped with a *Fourier-* transform accessory; CDCI₃ soln. at r.t., TMS as internal standard; chemical shifts in ppm as δ values.

2. *UV Irradiation* of *6 in Acetone.* A soln. of **6** (250 mg) in acetone (250 ml) was irradiated with a high-pressure mercury lamp *TQ 150 Z2 (Hanau)* at r.t. for 3.5 h. The mixture was then evaporated and the oily residue (286 mg) submitted to CC (silica gel (15 g), benzene/Et₂O 97: 3): crystalline $6/7$ (148 mg). Further elution with benzene/Et₂O 95: 5, 90:10, and 80:20 afforded an unresolvahle mixture (106 mg, *ca.* 42%), which was not further investigated.

Separation **of6/7.** To the above mixture **6/7** (148 mg) in MeOH (30 ml), 15 ml of 5% KOH/MeOH were added. The resulting soh. was left for 12 h in a refrigerator, concentrated *in vacuo* at r.t. to *en.* 15 ml, diluted with H,O, and extracted with Et₂O. The org. layer was washed with H₂O until neutral, dried (Na₂SO₄), and evaporated. CC (silica gel (7.5 g), benzene/Et,O 90: 10) yielded 57 mg of *(Z)-3a-hydroxy-5,lO-secocholest-l (IO)-en-5-one* **(7a;** m.p. 114-116°; [5]: m.p. 116°). Acetylation (Ac₂O/pyridine 1:1 (2 ml), overnight at r.t.) gave, after usual workup, *(Z)-5-oxo-5,IO-secocholest-l (lO)-en-3a-yl acetate* **(7;** 60 mg, 24.0% rel. to starting **6).** M.p. 138" (from acetone/ MeOH; [6]: m.p. 138"). Spectral data of **7:** identical with those of an authentic sample.

Further elution with benzene/Et,O 85: 15 afforded 77 mg of *(E)-3a-hydroxy-5,10-secocholest-l (lO)-en-5-one* **(6a)** as an oil ([4]: oil). It was acetylated as described above: *(E)-5-oxo-5,10-secocholest-l (10)-en-3a-yl acetate* **(6) (81** mg, 32.4% rel. to starting *6).*

3. LIV Irradiation of **6** *in Dioxane.* **A** soln. of **6** (250 mg) in dioxane (250 ml) was irradiated and worked up as described in *Exper. 2.* CC (silica gel (15 g), benzene/Et20 97: **3)** of the oily residue (263 **mg)** yielded **6/7/8** (160 mg). Further elution with benzene/Et₂O 95: 5, 90:10, and 80: 20 gave fractions containing a complex mixture (99 mg, *ca.*) 40%) which was not further investigated.

Separation of $6/7/8$. To a stirred and cooled $(0-5^{\circ})$ soln. of $6/7/8$ (160 mg) in MeOH (12 ml), NaBH₄ (65 mg) was gradually added. After 0.5 h, the mixture was diluted with H₂O, acidified with 10% aq. H₂SO₄ soln., and extracted with Et₂O. The org. layer was washed with H₂O, sat. aq. NaHCO₃ soln. and H₂O, dried (Na₂SO₄), and evaporated. The residue (164 mg) was chromatographed on silica gel (7.5 g). Elution with benzene/Et₂O 97:3 afforded *I~,5-epoxy-5~,l0a-cholestan-3a-y1 acetute(8;* 45 mg, 18% rel. to starting *6).* Oil. [a]g = + 21.7 *(c* = 0.92, CHCI,). IR (CCI,): 1738s, 1240s, 1040s. 'H-NMR: 0.70 **(s,** CH3(18)); 0.87 *(d,* CH3(26), CH3(27)); 0.89 *(d,* CH,(21)); 0.91 **(s,** CH3(19)); 1.97 *(s,* AcO); 3.08 *(dd, J* = 6, 2.4, H-C(1)); 5.18 *(m.* H-C(3)). Anal. calc. for $C_{29}H_{48}O_3$ (444.70): C 78.33, H 10.88; found: C 78.13, H 10.64.

Benzene/Et₂O 95: 5 eluted a mixture (108 mg), which was oxidized with a slight excess of *Kiliani's* CrO₃ soln. [8]. The resulting mixture **6/7** (104 mg), isolated after usual workup, was dissolved in MeOH (20 ml) and hydrolyzed with a 5% KOH/MeOH (10 ml) affording **6a/7a** (94 mg). Separation by CC (silica gel (7.5 g)) and acetylation as described above gave 6 mg (2.4%) of **7** and 92 mg (36.8 %) of *6* (yields rel. to starting *6).*

4. *UV Irradiation* **of7** *in Acetone or Dioxane.* A soln. of **7** (250 mg) in acetone (250 ml) **or** dioxane (250 ml) was irradiated and worked up as described in *Exper.* 2 and *3,* resp. Acetone soln.: 53 mg (21.2%) of **7,** 76 mg (30.4%) of **6,** and 112 mg *(ca.* 45%) of a complex mixture. Dioxane soln.: 32 mg (12.8%) of **8,** 5 mg (2.0%) **of7,** 106 mg (42.4%) of **6,** and 102 mg *(ca.* 40%) of a complex mixture.

5. *Alkaline Hydrolysis* of8. A soln. of **8** (175 mg) in MeOH **(30** ml) was treated with 5 ml of 5 % KOH/MeOH and worked up as described in *Exper.2* (overnight at r.t.) (concentration to *ca.* 10 ml). CC (silica gel (5 g), b enzene/Et₂O 9:1) of the oil (160 mg) gave $l\beta$,5-epoxy-5 β , $l0\alpha$ -cholestan-3 α -ol (8a; 115 mg, 72.8%). M.p. 104-106° (from acetone/MeOH). [α] $_{10}^{20}$ = +40.2 *(c =* 1.00, CHCl₃). IR (KBr): 3460s, 1070s. ¹H-NMR: 0.68 *(s, CH₃*(18)); 0.86 *(d, CH₃*(26), CH₃(27)); 0.89 *(d, CH₃*(21)); 0.91 *(s, CH₃*(19)); 1.97 *(s, AcO)*; 3.06 *(dd, J* = 6, 2.4, H-C(1)). Anal. calc. for C,,H,,O, (402.6): C 80.54, **H** 11.51; found: C 80.38, H **11.33.**

REFERENCES

- Lj. DoSen-MiCoviC, LJ. Lorenc, M. LJ. MihailoviC, *Tetrahedron* 1990,46, 3659.
- a) F.D. Lewis, R. **W.** Johnson, *J. Am. Chem. Soc.* **1972,94,** 8914, and ref. cit. therein; b) **H.** Suginome, T. Ohtsuka, Y. Yamamoto, K. Orito, C. Jaime, E. Osawa, *J. Chem. Soc., Perkin Trans.* **11990,** 1247.
- H.-Ch. Mez, **G.** Rist, 0. Ermer, Lj. Lorenc, J. Kalvoda, M. Lj. MihailoviC, *Helu. Chim. Acta* **1976,** *59,* 1273.
- [4] H. Fuhrer, Lj. Lorenc, V. Pavlović, G. Rihs, G. Rist, J. Kalvoda, M. Lj. Mihailović, *Helv. Chim. Acta* 1979, 62, 1770.
- Lj. Lorenc, **V.** PavloviC, M. Lj. MihailoviC, B. Tinant, J.-P. Declercq, M. Van Meerssche, *Croat. Chem. Acta* **1989,62,** 43.
- H. Fuhrer, Lj. Lorenc, V. PavloviC, G. Rihs, **G.** Rist, J. Kalvoda, M. Lj. MihailoviC, *Helu. Chim. Acta* 1981, 64, 703.
- [7] N. J. Turro, 'Modern Molecular Photochemistry', The Benjamin, Menlo Park, 1978, pp. 432–437.
- a) A. Bowers, T. G. Halsall, E. R. H. Jones, **A.** J. Lemin, *J. Chem. SOC.* 1953,2548; b) H. Heusser, **M.** Roth, 0. Rohr, R. Anliker, *Helu. Chim. Acta* 1955,38, 1178.